Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.21.477296

ABSTRACT

SUMMARY Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with SARS-CoV-2 infection, variants with constellations of mutations in the spike gene threaten their efficacy. Accordingly, antiviral interventions that are resistant to further virus evolution are needed. The host-derived cytokine IFN-λ has been proposed as a possible treatment based on correlative studies in human COVID-19 patients. Here, we show IFN-λ protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1.529 (Omicron)variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally-delivered IFN-λ2 limited infection of historical or variant (B.1.351 and B.1.1.529) SARS-CoV-2 strains in the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-λ was produced preferentially in epithelial cells and acted on radio-resistant cells to protect against of SARS-CoV-2 infection. Thus, inhaled IFN-λ may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-448370.v1

ABSTRACT

Rapidly-emerging variants jeopardize antibody-based countermeasures against SARS-CoV-2. While recent cell culture experiments have demonstrated loss of potency of several anti-spike neutralizing antibodies against SARS-CoV-2 variant strains1-3, the in vivo significance of these results remains uncertain. Here, using a panel of monoclonal antibodies (mAbs) corresponding to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron, and Lilly we report the impact on protection in animals against authentic SARS-CoV-2 variants including WA1/2020 strains, a B.1.1.7 isolate, and chimeric strains with South African (B.1.351) or Brazilian (B.1.1.28) spike genes. Although some individual mAbs showed reduced or abrogated neutralizing activity against B.1.351 and B.1.1.28 viruses with E484K spike protein mutations in cell culture, low prophylactic doses of mAb combinations protected against infection in K18-hACE2 transgenic mice, 129S2 immunocompetent mice, and hamsters without emergence of resistance. Two exceptions were mAb LY-CoV555 monotherapy which lost all protective activity in vivo, and AbbVie 2B04/47D11, which showed partial loss of activity. When administered after infection as therapy, higher doses of mAb cocktails protected in vivo against viruses displaying a B.1.351 spike gene. Thus, many, but not all, of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing SARS-CoV-2 variant strains.

3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3790898

ABSTRACT

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we utilized single-cell sequencing to profile SARS-CoV-2-reactive B cell subsets in 42 COVID-19 patients. We isolated thousands of B cells in multiple distinct subsets specific to the SARS-CoV-2 spike, endemic coronavirus (HCoV) spikes, nucleoprotein (NP), and open reading frame 8 (ORF8). Spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients 1.5–5 months post-infection. With severe acute infection, we identified substantial populations of endemic HCoV-reactive antibody-secreting cells with highly mutated variable genes, indicative of preexisting immunity. Finally, MBCs exhibited maturation to NP and ORF8 over time relative to spike, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal considerable antibody adaptation to non-neutralizing antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.Trial Registration Number: This clinical trial was registered at ClinicalTrials.gov with identifier NCT04340050, and clinical information for patients included in the study is detailed in Table S1–S3.Funding: This project was funded in part by the National Institute of Allergy and Infectious Disease (NIAID); National Institutes of Health (NIH) grant numbers U19AI082724 (P.C.W.), U19AI109946 (P.C.W.), U19AI057266 (P.C.W.), the NIAID Centers of Excellence for Influenza Research and Surveillance (CEIRS) grant numbers HHSN272201400005C(P.C.W.). N.W.A. was supported by the Multi-disciplinary Training program in Cancer Research (MTCR) - NIH T32 CA009594. A.J. and R.P.J were supported by federal funds from the NIAID, NIH, and Department of Health and Human Services under Contract HHSN272201700060C. F.K and F.A. were funded by the NIAID CEIRS contractHHSN272201400008C, Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract 75N93019C00051 and the generous support of the JPB foundation, the Open Philanthropy Project (#2020-215611) and other philanthropic donations. Y.K. and P.H.were funded by the Research Program on Emerging and Re-emerging Infectious Disease grant (JP19fk0108113) and the Japan Program for Infectious Diseases Research and Infrastructure (JP20fk0108272) from the Japan Agency for Medical Research and Development (AMED), NIAID CEIRS contract HHSN272201400008C, and CIVIC contract 75N93019C00051. D.F., C.N, Y.D., and P.D.H, were supported by NIAID contracts HHSN272201700060C and 75N93019C00062. M.S.D. and E.S.W. were supported by NIH grants R01 AI157155 and F30 AI152327, respectively.Conflict of Interest: Several antibodies generated from this work are being used by Now Diagnostics in Springdale, AR for the development of a diagnostic test. M.S.D. is a consultant for Inbios, Vir Biotechnology, NGM Biopharmaceuticals, and Carnival Corporation, and on the Scientific Advisory Boards of Moderna and Immunome. The Diamond laboratory has received funding support in sponsored research agreements from Moderna, Vir Biotechnology, and Emergent BioSolutions.Ethical Approval: All studies were performed with the approval of the University of Chicago institutional review board IRB20-0523 and University of Chicago, University of Wisconsin-Madison, and Washington University in St. Louis institutional biosafety committees. Informed consent was obtained after the research applications and possible consequences of the studies were disclosed to study subjects.


Subject(s)
Lymphoma, B-Cell , Dyskinesia, Drug-Induced , Communicable Diseases, Emerging , Communicable Diseases , Emergencies , COVID-19 , Hypersensitivity
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-228079.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic infecting more than 106 million people and causing 2.3 million deaths. The rapid deployment of antibody-based countermeasures has provided hope for curtailing disease and ending the pandemic1. However, the emergence of rapidly-spreading SARS-CoV-2 variants in the United Kingdom (B.1.1.7), South Africa (B.1.351), and elsewhere with mutations in the spike protein has raised concern for escape from neutralizing antibody responses and loss of vaccine efficacy based on preliminary data with pseudoviruses2-4. Here, using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera, and human sera from recipients of the Pfizer-BioNTech (BNT162b2) mRNA vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, a chimeric Washington strain with a South African spike gene (Wash SA-B.1.351), and isogenic recombinant variants with designed mutations or deletions at positions 69-70, 417, 484, 501, and/or 614 of the spike protein. Several highly neutralizing mAbs engaging the receptor binding domain (RBD) or N-terminal domain (NTD) lost inhibitory activity against Wash SA-B.1.351 or recombinant variants with an E484K spike mutation. Most convalescent sera and virtually all mRNA vaccine-induced immune sera tested showed markedly diminished neutralizing activity against the Wash SA-B.1.351 strain or recombinant viruses containing mutations at position 484 and 501. We also noted that cell line selection used for growth of virus stocks or neutralization assays can impact the potency of antibodies against different SARS-CoV-2 variants, which has implications for assay standardization and congruence of results across laboratories. As several antibodies binding specific regions of the RBD and NTD show loss-of-neutralization potency in vitro against emerging variants, updated mAb cocktails, targeting of highly conserved regions, enhancement of mAb potency, or adjustments to the spike sequences of vaccines may be needed to prevent loss of protection in vivo.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL